• Users Online: 224
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 29  |  Issue : 1  |  Page : 11-19

Fracture resistance of simulated immature teeth rehabilitated with different restorative materials: A three-dimensional finite element analysis


Department Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, Karnataka, India

Correspondence Address:
Akshata Chambanna Ron
Department of Conservative Dentistry and Endodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-7212.207006

Rights and Permissions

Aim: The aim of this study was to evaluate and compare the fracture resistance of simulated immature teeth rehabilitated with different restorative materials. Materials and Methods: A three-dimensional mathematical finite element analysis model was generated using a simulated immature maxillary central incisor. Five different models were generated representing Model 1 (control group): an immature tooth model without any reinforcement material; Model 2: Mineral trioxide aggregate (MTA) as apical plug (4 mm) + dual cure composite resin (till the access cavity); Model 3: Biodentine as apical plug (4 mm) + dual cure composite resin (till the access cavity); Model 4: Biodentine filled in the entire root canal (8.5 mm) + dual cure composite resin (till the access cavity); and Model 5: MTA filled in the entire root canal (8.5 mm) + dual cure composite resin (till the access cavity). A force of 100N was applied at an angle of 130° to the palatal surface of the tooth. Stress distribution at cement-enamel junction was measured using the Von Mises stress criteria. Results: The highest stress development was seen in the Model 1 (control group). Model 3 showed higher fracture resistance as the stresses developed (when a 4 mm of apical plug of Biodentine reinforced with dual cure resin) were less followed by Model 2, 4, and 5. Conclusion: An apical plug of 4 mm Biodentine followed by intracanal rehabilitation with dual cure resin reinforces the immature tooth thereby increasing the fracture resistance.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed235    
    Printed16    
    Emailed0    
    PDF Downloaded75    
    Comments [Add]    

Recommend this journal